About this guide

This is your course guide. It provides the basic but fundamental information about your course of study. This guide is yours for the duration of the course, we don't re-issue it annually and if any information contained within were to change then we will write to you to explain so.

In particular, if any important aspects relating to your modules were to change then we will inform you in accordance with the Code of Practice for the Management of Changes to Modules and Courses. The teaching and support teams which you will get to know over time will refer to this guide – it will be useful to you and we advise you to make good use of it throughout your studies.

The Course Guide should be read in conjunction with the more general sources of information which relate to all students at the University. The Student Handbook is a very detailed reference point for all issues relating to your studies which aren't specific to just your particular course. You might also want to refer to the Student Charter; the University's Policies and Regulations and the University Assessment Handbook documents which will provide you with all of the information that we think you will need for your period of study here.

If you need additional information, or you simply want to discuss elements of any of these documents or other aspects of your course, find that there is something you need to know, please contact your Faculty Student Services:

Faculty Student Services

We can help with the administration and organisation of your time at University – from enrolment and module registration, tuition fee enquiries, attendance support, course management and lifecycle queries, extenuating circumstances, leave of absence, transfers and changes, assignment submission, SAMs appointments, assessment and result queries, right through to Graduation.

You can also come and talk to us for impartial advice and support if things are starting to go wrong and you're not sure who else to talk to. The main thing to remember is that you are not alone. We see large numbers of students over the course of a year on a variety of issues, so please don't be afraid to approach us.

We are here to ensure that your transition into Higher Education is as smooth as possible. Normal office opening hours are Monday-Friday 08:45-17:00.

You can contact us through the e:vision help desk, by phone or in person or by e-mail:

<table>
<thead>
<tr>
<th>Faculty of Science and Engineering (City Campus)</th>
<th>Alan Turing Building MI 024</th>
<th>(01902) 322129</th>
<th>fsestudentservices@wlv.ac.uk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty of Science and Engineering (Telford Campus)</td>
<td>The Darby Building SC 041</td>
<td>(01902) 322129</td>
<td>fsestudentservices@wlv.ac.uk</td>
</tr>
<tr>
<td>Help and Advice is also available from Student Support & Wellbeing...</td>
<td>Contact us at the Alan Turing Building MI 001 for all enquiries and referrals... Services operate at all campuses by appointment.</td>
<td>(01902) 321074</td>
<td>(01902) 321070</td>
</tr>
</tbody>
</table>

Welcome from the Course Leader

On behalf of the teaching and support teams from BSc (Hons) Chemical Engineering with Chemistry course, I would like to extend to you a very warm welcome to the University of Wolverhampton, and in particular your campus.

My name is Phil Cox and I am the course leader for your BSc (Hons) Chemical Engineering with Chemistry
course and alongside your personal tutor, will be your main point of contact over the duration of your studies. My contact details are below – please don’t hesitate to get in touch if you need any support or guidance.

The successes which you will achieve whilst at the University are based upon a partnership between the expertise and support from the staff here and the effort you put into learning. We welcome students who are eager to think for themselves, to take control of their own learning and who are ready to get involved in developing the skills required in a highly competitive job market. Make the most of the wide range of opportunities available to you.

Studying at University can be difficult, and for many of you the transition into University life will be challenging. However we will support you throughout your course, particularly whilst you develop into an independent learner over the course of your first year with us.

We believe it is important that you are encouraged to make your own contribution to the effective operation and development of your chosen course. We hope that you might consider acting as a Course Representative during some of your time with us to help the University continue to improve your experience.

I would like to wish you every success with your studies. We look forward to working with you and hope that you enjoy your time with us.

Phil Cox

Course Management and Staff Involvement

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Specialism</th>
<th>eMail</th>
<th>Tel. Ext.</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of Department</td>
<td>Georgina Manning</td>
<td></td>
<td>G.Manning@wlv.ac.uk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Leader</td>
<td>Professor Phil Cox</td>
<td></td>
<td>P.W.Cox@wlv.ac.uk</td>
<td>2548</td>
<td>MI310</td>
</tr>
<tr>
<td>Student Advisor</td>
<td>Miss Kimberley Turner</td>
<td></td>
<td>Kim.Turner@wlv.ac.uk</td>
<td>3577</td>
<td>MI024</td>
</tr>
<tr>
<td>Faculty Enabling Tutor</td>
<td>Mrs Sheri Sankey</td>
<td></td>
<td>sankeys@wlv.ac.uk</td>
<td>1857</td>
<td>MI122</td>
</tr>
</tbody>
</table>

Educational Aims of the Course

You will have studied a core of organic, inorganic, physical and analytical chemistry, the pillars of what can be considered to be “the central science” and have an integrated knowledge of these main areas of chemistry together with good practical skills, literacy, numeracy. You will have a high level of IT skills and be capable of logical, scientific, critical thinking and problem solving. In addition you will have studied many of the essential concepts of Pharmaceutical Science and will understand much of the principles and language of these sciences at the interface of chemistry. These skills will make you well equipped for the workplace, be it in a pharmaceutical science, chemistry or chemistry related environment or the wider world of work in general. You will also be well placed for further study and/or research if you so choose.

What makes this programme distinctive?

This degree aims to:

- develop your skills and knowledge in the main areas of chemistry (organic, inorganic, physical and analytical chemistry) and also enable you to develop a strong awareness of the specialist application of chemistry to pharmaceutical science. This will encompass the physicochemical nature of drugs, the molecular basis of life, practical pharmaceutical techniques, the principles of drug development and formulation and advanced pharmaceutical formulation. In addition if you choose to undertake a Sandwich degree then the course will allow you to acquire technical skills in the workplace and enable you to
integrate knowledge gained in the theoretical aspects of the course into the professional environment.
- produce a graduate who is "fit for purpose", who is ready for employment in the chemistry/pharmaceutical or a related industry, or who can progress to teaching, further study or research aspirations.

Course Structure

September (Full-Time)

Part time students study alongside full time students. However, they do not study more than 80 credits in each academic calendar year.

Year 1

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Period</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4ET011</td>
<td>Principles of Chemical Engineering</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>4ET005</td>
<td>Engineering Mathematics</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>4CH003</td>
<td>Fundamentals of Organic Chemistry</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>4ET004</td>
<td>Thermodynamics and Fluids I</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>4ET012</td>
<td>Unit Operations and Separation Processes</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>4CH002</td>
<td>Principles of Physical Chemistry</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
</tbody>
</table>

September (Full-Time)

Part time students study alongside full time students. However, they do not study more than 80 credits in each academic calendar year.

Year 2

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Period</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ET030</td>
<td>Transport Processes</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>5ET032</td>
<td>Fluid Mechanics and Multiphase Systems</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>5CH003</td>
<td>Physical Chemistry (Chemical Thermodynamics)</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>5ET015</td>
<td>Reaction Engineering</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>5ET014</td>
<td>Unit Processes and design</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>5CH001</td>
<td>Chemical Analysis</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
</tbody>
</table>

September (Full-Time)

Part time students study alongside full time students. However, they do not study more than 80 credits in each academic calendar year.

Year 3
<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Period</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6ET025</td>
<td>Environmental Engineering</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>6CH003</td>
<td>Quality Assurance and Laboratory Management</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>6ET006</td>
<td>Control Engineering I</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>6CH004</td>
<td>Advanced Physical and Materials Chemistry</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>6ET012</td>
<td>Design Project</td>
<td>40</td>
<td>YEAR</td>
<td>Core</td>
</tr>
</tbody>
</table>

Course Learning Outcomes

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>Contributing Modules</th>
</tr>
</thead>
</table>
| **CertHE Course Learning Outcome 1 (CHECLO1)** | 4CH002 Principles of Physical Chemistry
4CH003 Fundamentals of Organic Chemistry
4ET004 Thermodynamics and Fluids I
4ET005 Engineering Mathematics
4ET011 Principles of Chemical Engineering
4ET012 Unit Operations and Separation Processes |
| **CertHE Course Learning Outcome 2 (CHECLO2)** | 4CH002 Principles of Physical Chemistry
4CH003 Fundamentals of Organic Chemistry
4ET004 Thermodynamics and Fluids I
4ET005 Engineering Mathematics
4ET011 Principles of Chemical Engineering
4ET012 Unit Operations and Separation Processes |
| **CertHE Course Learning Outcome 3 (CHECLO3)** | 4CH002 Principles of Physical Chemistry
4CH003 Fundamentals of Organic Chemistry
4ET004 Thermodynamics and Fluids I
4ET005 Engineering Mathematics
4ET011 Principles of Chemical Engineering
4ET012 Unit Operations and Separation Processes |
| **CertHE Course Learning Outcome 4 (CHECLO4)** | 4CH002 Principles of Physical Chemistry
4CH003 Fundamentals of Organic Chemistry
4ET004 Thermodynamics and Fluids I
4ET005 Engineering Mathematics
4ET011 Principles of Chemical Engineering
4ET012 Unit Operations and Separation Processes |
| **CertHE Course Learning Outcome 5 (CHECLO5)** | 4ET004 Thermodynamics and Fluids I
4ET005 Engineering Mathematics
4ET011 Principles of Chemical Engineering
4ET012 Unit Operations and Separation Processes |

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>Contributing Modules</th>
</tr>
</thead>
</table>
| **DipHE Course Learning Outcome 1 (DHECLO1)** | 5CH001 Chemical Analysis
5CH003 Physical Chemistry (Chemical Thermodynamics)
5ET014 Unit Processes and design
5ET015 Reaction Engineering
5ET030 Transport Processes
5ET032 Fluid Mechanics and Multiphase Systems |
| **DipHE Course Learning Outcome 2 (DHECLO2)** | 5CH001 Chemical Analysis
5CH003 Physical Chemistry (Chemical Thermodynamics)
5ET014 Unit Processes and design |
concepts and principles outside the context in which they were first studied, including, where appropriate, the application of those principles in an employment context.

DipHE Course Learning Outcome 3 (DHECLO3)
Demonstrate knowledge of the main methods of enquiry in the subject(s) relevant to the named award, and ability to evaluate critically the appropriateness of different approaches to solving problems in the field of study.

DipHE Course Learning Outcome 4 (DHECLO4)
Use a range of established techniques to initiate and undertake critical analysis of information, and to propose solutions to problems arising from that analysis.

DipHE Course Learning Outcome 5 (DHECLO5)
Effectively communicate information, arguments and analysis in a variety of forms to specialist and non-specialist audiences, and deploy key techniques of the discipline effectively.

DipHE Course Learning Outcome 6 (DHECLO6)
Demonstrate the qualities and transferable skills necessary for employment, requiring the exercise of personal responsibility and decision-making and undertake further training, developing existing skills and acquire new competences that will enable them to assume significant responsibility within organisations.

Ordinary Degree Course Learning Outcome 1 (ORDCLO1)
Demonstrate a systematic understanding of key aspects of your field of study, including acquisition of coherent and detailed knowledge, at least some of which is at, or informed by, the forefront of defined aspects of a discipline with an appreciation of the uncertainty, ambiguity and limits of knowledge.

Ordinary Degree Course Learning Outcome 2 (ORDCLO2)
Demonstrate an ability to deploy accurately established techniques of analysis and enquiry within a discipline and apply the methods and techniques that they have learned to review, consolidate, extend and apply your knowledge and understanding, and to initiate and carry out projects.

Ordinary Degree Course Learning Outcome 3 (ORDCLO3)
Demonstrate conceptual understanding that enables the student: 1. to devise and sustain arguments, and/or to solve problems, using ideas and techniques, some of which are at the forefront of a discipline 2. to describe and comment upon particular aspects of current research, or equivalent advanced scholarship, in the discipline.
Ordinary Degree Course Learning Outcome 4 (ORDCLO4)
Demonstrate the ability to manage your own learning, and to make use of scholarly reviews and primary sources (for example, refereed research articles and/or original materials appropriate to the discipline) and communicate information, ideas, problems and solutions to both specialist and non-specialist audiences.

Ordinary Degree Course Learning Outcome 5 (ORDCLO5)
Critically evaluate arguments, assumptions, abstract concepts and data (that may be incomplete), to make judgements, and to frame appropriate questions to achieve a solution - or identify a range of solutions - to a problem.

Ordinary Degree Course Learning Outcome 6 (ORDCLO6)
Demonstrate the qualities and transferable skills necessary for employment requiring: 1. the exercise of initiative and personal responsibility 2. decision-making in complex and unpredictable contexts 3. the learning ability needed to undertake appropriate further training of a professional or equivalent nature.

Honours Degree Course Learning Outcome 1 (DEGCLO1)
Show an understanding and appreciation of hazard and operability, safety and ethical principles in a chemical process environment.

Honours Degree Course Learning Outcome 2 (DEGCLO2)
Demonstrate knowledge and critical understanding of the principles and principle numerical methods of chemical engineering.

Honours Degree Course Learning Outcome 3 (DEGCLO3)
Show a critical understanding of process engineering, plant and reactor design, and their implications for practice.

Honours Degree Course Learning Outcome 4 (DEGCLO4)
Understand a selection of concepts and technologies that are appropriate to Chemistry.

Honours Degree Course Learning Outcome 5 (DEGCLO5)
Demonstrate relevant personal and interpersonal skills, and thinking critically and creatively during problem solving especially when faced with engineering challenges.
Employability in the Curriculum

The following have been identified as important.

The following skills will be developed during levels 4-6:

1. Communication skills, covering both written and oral communication
2. Problem-solving skills, relating to qualitative and quantitative information
3. Numeracy and mathematical skills, including such aspects as error analysis, order-of-magnitude estimations, correct use of units and modes of data presentation
4. Information retrieval skills, in relation to primary and secondary information sources, including information retrieval through online computer searches
5. IT skills
6. Interpersonal skills, relating to the ability to interact with other people and to engage in teamworking
7. Time management and organisational skills, as evidenced by the ability to plan and implement efficient and effective modes of working
8. Skills needed to undertake appropriate further training of a professional nature.

Teaching, Learning and Assessment

The University’s Learning, Teaching and Assessment Sub-Strategy 2012-2017 was consulted. We aim to develop students who are critically reflective, entrepreneurial, employable, digitally literate, well networked and socially responsible.

It is important that students should be aware of several key industrial, environmental and other applied and research aspects of chemistry. Throughout the course, students will consider the role that chemistry plays in the broader context of chemistry-related disciplines, either pharmaceutically or chemical engineering related. This will be achieved through the diet of specialist chemical engineering and chemistry modules.

Throughout each course the students will use a range of standard and specialist software to prepare and present reports, assignments, presentations, etc across a wide range of modules, with increasing sophistication. Students will be expected to make use of the Universities virtual on-line learning framework for accessing module information, submitting assignments, formative self-testing, engaging in module fora, etc. Students will be expected to make use of email for module and other University communications. One aspect of the course will encompass the use of software such as Knowitall, molecular modelling packages and use of packages such as Excel or Graphpad Prism to manipulate data.

By the end of their course, students should be comfortable with, and be competent in, the digital world and have the flexibility to adapt to a wide range of digital activities.

The develops students' knowledge base and skills in Chemical Engineering using the subject specific module content of core Chemical Engineering. In addition, the development of transferable skills improves and enhances employability beyond the field science in general.

The emphasis on the students moving to a student centred learning approach simultaneously fosters the development of transferrable skills, together with group learning and problem solving approaches. Students are encouraged to reflect upon their learning experience and to extrapolate from this the skills that would make them stand out in their respective career pathways. Students will also be directed to the relevant careers support services in the University.

There will be a range of learning activities, as indeed there will be a range of assessment patterns. The typical learning activities that will be employed can be listed as follows:

- Traditional face to face lectures with some e-lecture/podcasts.
• Traditional tutorial activity with some e-tutorial work.
• Hands on “in the laboratory” practical activity (working singly, in pairs and in groups where appropriate), with some e-preparation for laboratory skills.
• Workshop/seminars (working in groups and including problem solving, problem-based learning).

Typically, students will be presented with theoretical information in lecture sessions and then will use workshops, group tutorials, seminars, on-line fora, electronic tutorials, directed reading and a range of IT-based activities and formative assessments to develop these concepts.

Practical skills will be developed throughout each course. The level 4 practical work will be directed towards developing basic laboratory skills, which are subsequently built upon at levels 5. Thus, as the student develops, there is a gradual shift from students carrying out simple practical work, where the practical schedules are provided to them, towards more extensive (multiple week) problem solving practical exercises, and typically culminating in the 20 credit research project at level 6. At level 6, students will be expected to apply many of the practical skills that they have learned throughout their course to a relatively small 20 credit research project in their area of interest.

The learning activities shall be focused on moving from a more tutor-centred approach in the earlier parts of the course towards a student-centred learning approach in the latter stages.

Thus, level 4 modules tend to involve tutor-led sessions, with defined student directed activities, whereas level 6 modules are more student-centred, with tutors acting to facilitate students’ learning. Some of the latter theory modules will involve key note lectures only, with students being required to undergo significant independent research and learning to work up selected advanced topics, of direct relevance to industry and/or our research programmes.

There is little mention of specific reference transferable (professional) skills in the University's Learning, Teaching and Assessment Sub-Strategy 2012-2017 although these will be key.

Reference Points

Quality Code -. Including :

Qualifications Frameworks
Characteristics Statements
Credit Frameworks
Subject Benchmark Statements – list

Chemical Engineering “with” courses.

In the initial years of the course we will not look for accreditation of the Chemical Engineering “with” courses with the IChemE. Undergraduate courses that have accredited status carry a considerable points tariff especially for mathematics. Although the need for strong mathematics is appropriate for a full Chem Eng degree it doesn’t allow for recruitment from a broader community. Thus “the with” courses will provide the students with a strong skill set with which to gain employment and in the cases where a design project is taken in the third year allow for later application to chartered status. This has been discussed with IChemE and the University of Huddersfield who have run a similar and very successful course for many years.

Quality Code - Part B: Assuring and Enhancing Academic Quality

University Policies and Regulations

We have also referred to internal documents such as the University of Wolverhampton's Teaching, Learning and Assessment Sub Strategy (2012-2017) and current Academic Regulations (2016-17).

Equality Act (2010)
Academic Regulations Exemptions

None

Support with your studies

University Learning Centres are the key source of academic information for students providing access to:

- Physical library resources (books, journal, DVDs etc.)
- Study areas to allow students to study in the environment that suits them best: Social areas, quiet and silent areas.
- A wide range of online information sources, including eBooks, e-journals and subject databases
- Academic skills support via the Skills for Learning programme
- Students on campus can attend workshops or ask for one-to-one help on a range of skills such as academic writing and referencing.
- Dedicated Subject Pages to enable you to explore key online information sources that are recommended for their studies.
- Physical access to local libraries both in UK and overseas via SCONUL and WorldCat agreements

We also strongly advise you to download to “MyWLV” student app. MyWLV is a single point of personalised access to the variety of systems the University offers. This includes pulling through relevant information (e.g. deadlines, timetables) and linking to underlying systems.

Leave of Absence:

The University allows breaks in learning of up to two years and there is a process for applying for a leave of absence, which can be accessed through your e:Vision account. Initially you will need to apply for the leave of absence, which could be for medical, parental or personal reasons. A short-term absence, such as annual leave, must not be recorded as a break. The course leader will consider, and where appropriate agree, the leave of absence application. A return date will be identified and agreed for a suitable point in the programme. Additional course fees may be incurred as a result of a leave of absence and you are advised to discuss this with the Faculty Student Services team prior to application.

Course Specific Support

Each student will be allocated a personal tutor who can provide general help, advice, guidance and, if required, direct them to services such as "Here2Help", Counselling Services, Student Enabling Centre, Student’s Union, Chaplaincy (all Faiths), Study Skills (Learning centre, see below).

Module-specific support is provided through the module team via face-to-face and electronic tutorials, scheduled drop-in sessions or SAMS (Student Appointment Management System) appointments.

The team of demonstrators provides drop-in sessions for specific module queries and also more general study skills advice. Feedback from formative and some summative assessments is designed to support learning by assisting the student in identifying and improving areas of weakness, and further developing areas of strength.

The Faculty of Science and Engineering also offers a Student Support Team (located in the Faculty Administration Office) and this is a key additional source of support, particularly for non-academic related matters. This tends to be a student’s first port of call and the team can advise students and, if required direct them to further University services as mentioned above.

There are also a range of support facilities (relating to assessment tasks) that are available in the Learning Centre for students to access. The Skills for Learning programme provides opportunities to develop academic study skills, which will support you in your assessment tasks. Face to face activities, including workshops, drop-in sessions and appointments are available in Learning Centres. A wide range of support materials such
as videos, study guides, interactive tasks, and self-study packages can be accessed online. Details of all support is available from www.wlv.ac.uk/skills.

These can be found in the skills zone and can be booked (some are drop in sessions). The following are included:

- Skills for learning
- Finding information
- Study Guides
- Writing at University
- Referencing
- Maths support
- General study skills
- i-skills
- Good Academic Practice and writing: paraphrasing, referencing and TurnItIn
- Introduction to Critical Thinking
- Improving your Presentation Skills
- Preparing for your Exam
- Report Writing
- Planning your Dissertation
- Reading and Note-making

In addition, there are drop in support facilities for students to seek help from the Learning Centre Staff. These cover assessment related topics such as:

- exam revision
- planning and writing your academic assignments
- how to use your time efficiently and organise your academic study
- how to take effective notes during lectures
- tips on delivering effective presentations

Contact Hours

In higher education, the term ‘contact hours’ is used very broadly, to refer to the amount of time that you spend learning in contact with teaching or associated staff, when studying for a particular course.

This time provides you with the support in developing your subject knowledge and skills, and opportunities to develop and reflect on your own, independent learning. Contact time can take a wide variety of forms depending on your subject, as well as where and how you are studying. Some of the most common examples are:

- lectures
- seminars
- tutorials
- project supervisions
- demonstrations
- practical classes and workshops
- supervised time in a studio/workshop
- fieldwork
- external visits
- work-based learning (including placements)
- scheduled virtual interaction with tutor such as on line, skype, telephone

In UK higher education, you as the student take primary responsibility for your own learning. In this context, contact time with teaching and associated staff is there to help shape and guide your studies. It may be used to introduce new ideas and equip you with certain knowledge or skills, demonstrate practical skills for you to practise independently, offer guidance on project work, or to provide personalised feedback.
Alongside contact time, private or independent study is therefore very significant. This is the time that you spend learning without direct supervision from, or contact with, a member of staff. It might include background reading, preparation for seminars or tutorials, follow-up work, wider practice, the completion of assignments, revision, and so on.

50 Day Engagement:

You will be withdrawn from the University if you fail to engage with the academic requirements of your course of study, within 50 days of the course start date, following repeated and reasonable attempts by the University to contact you.

Course Specific Health and Safety Issues

Course Specific Health and Safety Issues: All students in the faculty of Science and Engineering are required to take and pass their Schools/Departments Health and Safety Assessment. All assessments are available via the Faculty of Science and Engineering Student Information topic in Canvas https://canvas.wlv.ac.uk/courses/9679 and you will only be allowed to carry out any practical work once you have passed the relevant assessments. It is essential that you read and understand the relevant codes covering the work within your specialist area and that you check them regularly for updates. All assessments should be completed before teaching commences.

Any student who currently has access to a restricted area, such as the Rosalind Franklin Building, via their ID card will have their access revoked at the start of the academic year unless they have passed their Schools/Departments Health and Safety Assessment. Students should be aware that any attempt to bypass the security systems can lead to disciplinary action.

Course Fact File

Hierarchy of Awards: Bachelor of Science with Honours Chemical Engineering with Chemistry
Bachelor of Science Chemical Engineering with Chemistry
Diploma of Higher Education Chemical Engineering with Chemistry
Certificate of Higher Education Chemical Engineering with Chemistry
University Statement of Credit University Statement of Credit

Course Codes: CH01H01UV CH01H31UV
Full-time Part-time 3 Years 6 Years

UCAS Code: H810

Awarding Body / Institution: University of Wolverhampton

School / Institute: Wolverhampton School of Sciences

Category of Partnership: Not delivered in partnership

Location of Delivery: University of Wolverhampton

Teaching Institution: University of Wolverhampton

Published: 26-Jun-2018 by Emma Miles