About this guide

This is your course guide. It provides the basic but fundamental information about your course of study. This guide is yours for the duration of the course, we don't re-issue it annually and if any information contained within were to change then we will write to you to explain so.

In particular, if any important aspects relating to your modules were to change then we will inform you in accordance with the Code of Practice for the Management of Changes to Modules and Courses. The teaching and support teams which you will get to know over time will refer to this guide – it will be useful to you and we advise you to make good use of it throughout your studies.

The Course Guide should be read in conjunction with the more general sources of information which relate to all students at the University. The Student Handbook is a very detailed reference point for all issues relating to your studies which aren't specific to just your particular course. You might also want to refer to the Student Charter; the University's Policies and Regulations and the University Assessment Handbook documents which will provide you with all of the information that we think you will need for your period of study here.

If you need additional information, or you simply want to discuss elements of any of these documents or other aspects of your course, find that there is something you need to know, please contact your Faculty Student Services:

Faculty Student Services

We can help with the administration and organisation of your time at University – from enrolment and module registration, tuition fee enquiries, attendance support, course management and lifecycle queries, extenuating circumstances, leave of absence, transfers and changes, assignment submission, SAMs appointments, assessment and result queries, right through to Graduation.

You can also come and talk to us for impartial advice and support if things are starting to go wrong and you’re not sure who else to talk to. The main thing to remember is that you are not alone. We see large numbers of students over the course of a year on a variety of issues, so please don’t be afraid to approach us.

We are here to ensure that your transition into Higher Education is as smooth as possible. Normal office opening hours are Monday-Friday 08:45-17:00.

You can contact us through the e:vision help desk, by phone or in person or by e-mail:

Faculty of Science and Engineering (City Campus)	Alan Turing Building MI 024	(01902) 322129	fsestudentservices@wlv.ac.uk
Faculty of Science and Engineering (Telford Campus)	The Darby Building SC 041	(01902) 322129	fsestudentservices@wlv.ac.uk
Help and Advice is also available from Student Support & Wellbeing...	Contact us at the Alan Turing Building MI 001 for all enquiries and referrals... Services operate at all campuses by appointment.	(01902) 321074 (01902) 321070	ssw@wlv.ac.uk money@wlv.ac.uk

Welcome from the Course Leader

On behalf of the teaching and support teams from BSc(Hons) Genetics and Molecular Biology course, I would like to extend to you a very warm welcome to the University of Wolverhampton, and in particular your campus.

My name is Matthew Conner and I am the course leader for your BSc(Hons) Genetics and Molecular Biology
course and alongside your personal tutor, will be your main point of contact over the duration of your studies. My contact details are below – please don’t hesitate to get in touch if you need any support or guidance.

The successes which you will achieve whilst at the University are based upon a partnership between the expertise and support from the staff here and the effort you put into learning. We welcome students who are eager to think for themselves, to take control of their own learning and who are ready to get involved in developing the skills required in a highly competitive job market. Make the most of the wide range of opportunities available to you.

Studying at University can be difficult, and for many of you the transition into University life will be challenging. However we will support you throughout your course, particularly whilst you develop into an independent learner over the course of your first year with us.

We believe it is important that you are encouraged to make your own contribution to the effective operation and development of your chosen course. We hope that you might consider acting as a Course Representative during some of your time with us to help the University continue to improve your experience.

I would like to wish you every success with your studies. We look forward to working with you and hope that you enjoy your time with us.

Matthew Conner

Course Management and Staff Involvement

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Specialism</th>
<th>eMail</th>
<th>Tel. Ext.</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of Department</td>
<td>Georgina Manning</td>
<td>Specialism</td>
<td>G.Manning@wlv.ac.uk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Leader</td>
<td>Dr Matthew Conner</td>
<td>Specialism</td>
<td>M.Conner@wlv.ac.uk</td>
<td>3492</td>
<td>MA145</td>
</tr>
<tr>
<td>Student Advisor</td>
<td>Miss Kimberley Turner</td>
<td>Student Advisor</td>
<td>Kim.Turner@wlv.ac.uk</td>
<td>3577</td>
<td>MI024</td>
</tr>
<tr>
<td>Faculty Enabling Tutor</td>
<td>Mrs Sheri Sankey</td>
<td>Faculty Enabling Tutor</td>
<td>sankeys@wlv.ac.uk</td>
<td>1857</td>
<td>MI122</td>
</tr>
</tbody>
</table>

Educational Aims of the Course

This course aims to:

- Develop your knowledge and understanding of the underlying theories of genetics and molecular biology. It will also provide practical experience of the major analytical techniques used in genetics and molecular biology, including bioinformatics.
- Equip you with the appropriate subject-specific knowledge and transferable skills for a wide range of careers in the research, industrial, health, educational, and academic sectors.
- Enable you to develop your skills in scientific and critical thinking and to study independently.
- In addition, if you choose to undertake a sandwich degree, the course will enable you to acquire technical skills in the workplace and integrate the knowledge gained from the theoretical aspects of the course into the professional work environment.

What makes this programme distinctive?

Our Genetics and Molecular Biology graduates have excellent job prospects.

Students have the opportunity to study via sandwich mode, taking a placement between the second and third years. The research undertaken can contribute towards your Honours project.
The skills you acquire, along with the reference from an industrial supervisor can be a big advantage in securing employment upon graduation.

Course Structure

September (Full-Time)

Year 1

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Period</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4AB008</td>
<td>Bioscience Skills</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>4AB007</td>
<td>Plants and the Environment</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>4BM005</td>
<td>Microbes and Immunity</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>4BM006</td>
<td>Disease Biology and Public Health</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>4PY013</td>
<td>Molecular Basis of Life</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
</tbody>
</table>

For this option group you must choose a minimum of 20 credits and a maximum of 20 credits

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>4BC001</td>
<td>Chemistry for Forensic and Molecular Science</td>
<td>20</td>
<td>SEM1</td>
</tr>
<tr>
<td>4BC002</td>
<td>Forensic and Molecular Chemistry</td>
<td>20</td>
<td>SEM1</td>
</tr>
<tr>
<td>4WL002</td>
<td>Basic Language</td>
<td>20</td>
<td>SEM1</td>
</tr>
<tr>
<td>4WL003</td>
<td>Elementary Language</td>
<td>20</td>
<td>SEM1</td>
</tr>
</tbody>
</table>

September (Full-Time)

Year 2

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Period</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5BC001</td>
<td>Molecular Biosciences</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>5BC002</td>
<td>Proteins</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>5BC003</td>
<td>Molecular Biosciences Practical Techniques</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>5AB008</td>
<td>Cellular and Organismal Biosciences</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>5BC004</td>
<td>Practical Molecular Bioscience and Investigative Methods</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>5BM012</td>
<td>Evolution and Origin of Life</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
</tbody>
</table>

September (Full-Time)

Year 3
<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Period</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AB003</td>
<td>Honours Project in Biological and Forensic Sciences</td>
<td>40</td>
<td>YEAR</td>
<td>Core</td>
</tr>
<tr>
<td>6BC001</td>
<td>Advanced Topics in Molecular Bioscience</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>6BC002</td>
<td>Gene Manipulation and Bioinformatics</td>
<td>20</td>
<td>SEM1</td>
<td>Core</td>
</tr>
<tr>
<td>6BM016</td>
<td>Human Evolution</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
<tr>
<td>6AB002</td>
<td>Plant Biotechnology</td>
<td>20</td>
<td>SEM2</td>
<td>Core</td>
</tr>
</tbody>
</table>

Course Learning Outcomes

CertHE Course Learning Outcome 1 (CHECLO1)
Demonstrate knowledge of the underlying concepts and principles associated with your area(s) of study, and an ability to evaluate and interpret these within the context of that area of study.

- 4AB007 Plants and the Environment
- 4AB008 Bioscience Skills
- 4BC001 Chemistry for Forensic and Molecular Science
- 4BC002 Forensic and Molecular Chemistry
- 4BM005 Microbes and Immunity
- 4BM006 Disease Biology and Public Health
- 4PY013 Molecular Basis of Life

CertHE Course Learning Outcome 2 (CHECLO2)
Demonstrate an ability to present, evaluate and interpret qualitative and quantitative data, in order to develop lines of argument and make sound judgements in accordance with basic theories and concepts of your subject(s) of study.

- 4AB007 Plants and the Environment
- 4AB008 Bioscience Skills
- 4BC001 Chemistry for Forensic and Molecular Science
- 4BC002 Forensic and Molecular Chemistry
- 4BM005 Microbes and Immunity
- 4BM006 Disease Biology and Public Health
- 4PY013 Molecular Basis of Life

CertHE Course Learning Outcome 3 (CHECLO3)
Evaluate the appropriateness of different approaches to solving problems related to your area(s) of study and/or work.

- 4AB007 Plants and the Environment
- 4AB008 Bioscience Skills
- 4BC001 Chemistry for Forensic and Molecular Science
- 4BC002 Forensic and Molecular Chemistry
- 4BM005 Microbes and Immunity
- 4BM006 Disease Biology and Public Health
- 4PY013 Molecular Basis of Life

CertHE Course Learning Outcome 4 (CHECLO4)
Communicate the results of your study/work accurately and reliably, and with structured and coherent arguments.

- 4AB007 Plants and the Environment
- 4AB008 Bioscience Skills
- 4BC001 Chemistry for Forensic and Molecular Science
- 4BC002 Forensic and Molecular Chemistry
- 4BM005 Microbes and Immunity
- 4BM006 Disease Biology and Public Health
- 4PY013 Molecular Basis of Life

CertHE Course Learning Outcome 5 (CHECLO5)
Demonstrate the qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility.

- 4AB007 Plants and the Environment
- 4AB008 Bioscience Skills
- 4BC001 Chemistry for Forensic and Molecular Science
- 4BC002 Forensic and Molecular Chemistry
- 4BM005 Microbes and Immunity
- 4BM006 Disease Biology and Public Health
- 4PY013 Molecular Basis of Life

DipHE Course Learning Outcome 1 (DHECLO1)
Demonstrate knowledge and critical understanding of the well-established principles of your area(s) of study, and of the way in which those principles have developed with an understanding of the limits of your knowledge.

- 5BC001 Molecular Biosciences
- 5BC002 Proteins
- 5BC003 Molecular Biosciences Practical Techniques
- 5BC004 Practical Molecular Bioscience and Investigative Methods
- 5BM012 Evolution and Origin of Life
and how this influences analyses and interpretations based on that knowledge.

<table>
<thead>
<tr>
<th>DipHE Course Learning Outcome 2 (DHECLO2)</th>
<th>5BC001 Molecular Biosciences</th>
<th>5BC002 Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate the ability to apply underlying concepts and principles outside the context in which they were first studied, including, where appropriate, the application of those principles in an employment context</td>
<td>5BC003 Molecular Biosciences Practical Techniques</td>
<td>5BC004 Practical Molecular Bioscience and Investigative Methods</td>
</tr>
<tr>
<td></td>
<td>5BM012 Evolution and Origin of Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DipHE Course Learning Outcome 3 (DHECLO3)</th>
<th>5BC001 Molecular Biosciences</th>
<th>5BC002 Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate knowledge of the main methods of enquiry in the subject(s) relevant to the named award, and ability to evaluate critically the appropriateness of different approaches to solving problems in the field of study.</td>
<td>5BC003 Molecular Biosciences Practical Techniques</td>
<td>5BC004 Practical Molecular Bioscience and Investigative Methods</td>
</tr>
<tr>
<td></td>
<td>5BM012 Evolution and Origin of Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DipHE Course Learning Outcome 4 (DHECLO4)</th>
<th>5BC001 Molecular Biosciences</th>
<th>5BC002 Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a range of established techniques to initiate and undertake critical analysis of information, and to propose solutions to problems arising from that analysis.</td>
<td>5BC003 Molecular Biosciences Practical Techniques</td>
<td>5BC004 Practical Molecular Bioscience and Investigative Methods</td>
</tr>
<tr>
<td></td>
<td>5BM012 Evolution and Origin of Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DipHE Course Learning Outcome 5 (DHECLO5)</th>
<th>5BC001 Molecular Biosciences</th>
<th>5BC002 Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectively communicate information, arguments and analysis in a variety of forms to specialist and non-specialist audiences, and deploy key techniques of the discipline effectively.</td>
<td>5BC003 Molecular Biosciences Practical Techniques</td>
<td>5BC004 Practical Molecular Bioscience and Investigative Methods</td>
</tr>
<tr>
<td></td>
<td>5BM012 Evolution and Origin of Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DipHE Course Learning Outcome 6 (DHECLO6)</th>
<th>5BC001 Molecular Biosciences</th>
<th>5BC002 Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate the qualities and transferable skills necessary for employment, requiring the exercise of personal responsibility and decision-making and undertake further training, developing existing skills and acquire new competences that will enable them to assume significant responsibility within organisations.</td>
<td>5BC003 Molecular Biosciences Practical Techniques</td>
<td>5BC004 Practical Molecular Bioscience and Investigative Methods</td>
</tr>
<tr>
<td></td>
<td>5BM012 Evolution and Origin of Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Honours Degree Course Learning Outcome 1 (DEGCLO1)</th>
<th>6AB002 Plant Biotechnology</th>
<th>6AB003 Honours Project in Biological and Forensic Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain concepts and technologies that are appropriate to the corpus of knowledge expected of a genetics and molecular biology graduate.</td>
<td>6BC001 Advanced Topics in Molecular Bioscience</td>
<td>6BC002 Gene Manipulation and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>6BM016 Human Evolution</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Honours Degree Course Learning Outcome 2 (DEGCLO2)</th>
<th>6AB002 Plant Biotechnology</th>
<th>6BC001 Advanced Topics in Molecular Bioscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Think clearly, with a sound knowledge of the issues surrounding the central role of genetics and molecular biology in all aspects life science.</td>
<td>6BC002 Gene Manipulation and Bioinformatics</td>
<td>6BM016 Human Evolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Honours Degree Course Learning Outcome 3 (DEGCLO3)</th>
<th>6AB002 Plant Biotechnology</th>
<th>6AB003 Honours Project in Biological and Forensic Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilise your skills to discover information for yourself and critically analyse, review and evaluate this in the light of your subject knowledge.</td>
<td>6BC001 Advanced Topics in Molecular Bioscience</td>
<td>6BC002 Gene Manipulation and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>6BM016 Human Evolution</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Honours Degree Course Learning Outcome 4 (DEGCLO4)</th>
<th>6AB002 Plant Biotechnology</th>
<th>6AB003 Honours Project in Biological and Forensic Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safely utilise a range of analytical techniques that are directly related to the needs of your future workplace role.</td>
<td>6BC001 Advanced Topics in Molecular Bioscience</td>
<td>6BC002 Gene Manipulation and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>6BM016 Human Evolution</td>
<td></td>
</tr>
</tbody>
</table>
Honours Degree Course Learning Outcome 5
(DEGCLO5)

Undertake independent study in an aspect of genetics and molecular biology utilising a range of appropriate information resources and investigative tools.

PSRB

BC004H01UV (Full-time)

Professional Accreditation Body:
Society of Biology

Accrediting Body:
Royal Society of Biology

Accreditation Statement:
Recognised by the Royal Society of Biology for the purpose of associate membership.

<table>
<thead>
<tr>
<th>Approved</th>
<th>Start</th>
<th>Expected End</th>
<th>Renewal</th>
</tr>
</thead>
</table>

BC004H31UV (Part-time)

Professional Accreditation Body:
Society of Biology

Accrediting Body:
Royal Society of Biology

Accreditation Statement:
Recognised by the Royal Society of Biology for the purpose of associate membership.

<table>
<thead>
<tr>
<th>Approved</th>
<th>Start</th>
<th>Expected End</th>
<th>Renewal</th>
</tr>
</thead>
</table>

Employability in the Curriculum

Geneticists and molecular biologists are in high demand across a range of scientific enterprises, for example, the multitude of genome projects have generated huge potential for scientists for drug design and delivery in the pharmaceutical and biotechnology industries. There is a growing demand for geneticists in the Health Service, in particular to run genetic diagnostics services and counselling, with potential for expansion with the coming personalised medicine revolution. Molecular methods are also undertaken extensively in hospital diagnostics in laboratories for disease diagnosis and in forensic science to provide evidence from crime scenes. There is also the opportunity to study for a higher degree after you graduation, for example MSc Molecular Biology with Bioinformatics, or MSc Applied Microbiology and Biotechnology or possibly to study a P.G.C.E. to gain qualified teacher status.

Teaching, Learning and Assessment

Learning activities are focused on moving towards student-centred learning from a more tutor-centred
approach. Thus level 4 modules tend to involve tutor-led sessions, with defined student directed activities, whereas level 6 modules are more student-centred, with tutors acting to facilitate students’ learning. Students will be presented with theoretical information in lecture sessions and then will use workshops, group tutorials, seminars, on-line forums, electronic tutorials, directed reading and a range of IT-based activities and formative assessments to develop these concepts. Practical skills will similarly be developed through the course. Level 4 practicals will be directed towards developing basic laboratory skills, which are put into context at level 5. At level 6, students will be expected to employ the practical skills they have learned in a research project in their area of interest.

The Development of Graduate Attributes

Global Citizenship

Throughout the course, students will consider the role genetics and molecular biology plays in the broader context of society. An important aspect of the course is the development of an understanding of professional practice and ethics in genetics and molecular biology. This will be developed in particular through the modules ‘Molecular Basis of Life’ at level 4, ‘Evolution and Origin of Life’ at level 5 and both ‘Human Evolution’ and ‘Advanced Topics in Molecular Bioscience’ at level 6. Professional practice and ethics are key concepts in many professions, and while specific details may vary, the understanding of the principles of professional practice and professional ethics is eminently transferable into many different fields.

Digital Literacy

Throughout the course students will use a range of standard and specialist software to prepare and present reports, assignments, presentations, etc across a wide range of modules, with increasing sophistication. Students will be introduced to ePDPs and start their individual e-portfolio using PebblePad. Students will be expected to make use of CANVAS for accessing module information, submitting assignments, engaging in module forums, etc. Students will be expected to make use of email for module and other University communications. By the end of the course, students should be comfortable with and competent in the digital world, and have the flexibility to adapt to a wide range of digital activities.

Knowledgeable and Enterprising

The course develops students’ knowledge base and skills in Genetics and Molecular Biology through all the subject specific module content. In addition, the development of transferable skills improves and enhances employability beyond the field of genetics and molecular biology, and indeed science in general. The emphasis on the students moving to a student centred learning approach also fosters the development of transferrable skills. Students are required to reflect upon their learning experience and to extrapolate from this the skills that would make them stand out in their respective career pathways. As part of the module 5BC004 Practical Molecular Bioscience Assay and Research Methods, they will also consider job applications, and how best to present themselves, by making a formal written application for an Honours project. Students will also be directed to the relevant University careers support services.

Reference Points

This course refers to the QAA Bioscience subject benchmark (2007).

Academic Regulations Exemptions

None
Support with your studies

University Learning Centres are the key source of academic information for students providing access to:

- Physical library resources (books, journal, DVDs etc.)
- Study areas to allow students to study in the environment that suits them best: Social areas, quiet and silent areas.
- A wide range of online information sources, including eBooks, e-journals and subject databases
- Academic skills support via the Skills for Learning programme
- Students on campus can attend workshops or ask for one-to-one help on a range of skills such as academic writing and referencing.
- Dedicated Subject Pages to enable you to explore key online information sources that are recommended for their studies.
- Physical access to local libraries both in UK and overseas via SCONUL and WorldCat agreements

We also strongly advise you to download to “MyWL” student app. MyWL is a single point of personalised access to the variety of systems the University offers. This includes pulling through relevant information (e.g. deadlines, timetables) and linking to underlying systems.

Leave of Absence:

The University allows breaks in learning of up to two years and there is a process for applying for a leave of absence, which can be accessed through your e:Vision account. Initially you will need to apply for the leave of absence, which could be for medical, parental or personal reasons. A short-term absence, such as annual leave, must not be recorded as a break. The course leader will consider, and where appropriate agree, the leave of absence application. A return date will be identified and agreed for a suitable point in the programme. Additional course fees may be incurred as a result of a leave of absence and you are advised to discuss this with the Faculty Student Services team prior to application.

Course Specific Support

The design of this award allows students to receive learning support targeted to individual needs. The generic module support delivered by the module teams includes regular reflective support meetings. In addition, more generic advice and feedback derived from the generic electronic assessment feedback to allow students to reflect on their personal issues in the context of the group performance.

The demonstrator team provides extensive learning support for students. The team is qualified to advise students at all stages of undergraduate study and provides regular informal drop-in sessions. This is supported by on-line bookable appointments with either demonstrators or academic staff to act as an additional layer of support. The Learning Centre offers considerable support with regards to study skills, as well as focussing on aspects of information retrieval.

During Level 4 studies, students are introduced to the basic approaches to study skills. This includes online literature searches, academic writing, and referencing skills. This is supported by academic staff within lectures, small group discussions and personal tutorial sessions.

Level 5 develops this by the demonstrator team facilitating the transition to primary literature information retrieval through project preparation.

Finally, at level 6, each student is individually supported throughout the project cycle in all aspects of the investigative process.

Contact Hours

In higher education, the term ‘contact hours’ is used very broadly, to refer to the amount of time that you
spend learning in contact with teaching or associated staff, when studying for a particular course.

This time provides you with the support in developing your subject knowledge and skills, and opportunities to develop and reflect on your own, independent learning. Contact time can take a wide variety of forms depending on your subject, as well as where and how you are studying. Some of the most common examples are:

- lectures
- seminars
- tutorials
- project supervisions
- demonstrations
- practical classes and workshops
- supervised time in a studio/workshop
- fieldwork
- external visits
- work-based learning (including placements)
- scheduled virtual interaction with tutor such as online, skype, telephone

In UK higher education, you as the student take primary responsibility for your own learning. In this context, contact time with teaching and associated staff is there to help shape and guide your studies. It may be used to introduce new ideas and equip you with certain knowledge or skills, demonstrate practical skills for you to practise independently, offer guidance on project work, or to provide personalised feedback.

Alongside contact time, private or independent study is therefore very significant. This is the time that you spend learning without direct supervision from, or contact with, a member of staff. It might include background reading, preparation for seminars or tutorials, follow-up work, wider practice, the completion of assignments, revision, and so on.

50 Day Engagement:

You will be withdrawn from the University if you fail to engage with the academic requirements of your course of study, within 50 days of the course start date, following repeated and reasonable attempts by the University to contact you.

Course Specific Health and Safety Issues

Course Specific Health and Safety Issues: All students in the faculty of Science and Engineering are required to take and pass their Schools/Departments Health and Safety Assessment. All assessments are available via the Faculty of Science and Engineering Student Information topic in Canvas https://canvas.wlv.ac.uk/courses/9679, and you will only be allowed to carry out any practical work once you have passed the relevant assessments. It is essential that you read and understand the relevant codes covering the work within your specialist area and that you check them regularly for updates. All assessments should be completed before teaching commences.

Any student who currently has access to a restricted area, such as the Rosalind Franklin Building, via their ID card will have their access revoked at the start of the academic year unless they have passed their Schools/Departments Health and Safety Assessment. Students should be aware that any attempt to bypass the security systems can lead to disciplinary action.

Course Fact File
Hierarchy of Awards:
- Bachelor of Science with Honours Genetics and Molecular Biology
- Bachelor of Science Genetics and Molecular Biology
- Diploma of Higher Education Genetics and Molecular Biology
- Certificate of Higher Education Genetics and Molecular Biology
- University Statement of Credit

Course Codes:
- BC004H01UV: Full-time 3 Years
- BC004H31UV: Part-time 6 Years

Awarding Body / Institution:
University of Wolverhampton

School / Institute:
Wolverhampton School of Sciences

Category of Partnership:
Not delivered in partnership

Location of Delivery:
University of Wolverhampton

Teaching Institution:
University of Wolverhampton

THE UNIVERSITY OF OPPORTUNITY

Published: 05-Jul-2018 by Matthew Conner